3.229 \(\int \frac{1}{\sqrt{1+x^2} \sqrt{2+4 x^2}} \, dx\)

Optimal. Leaf size=49 \[ \frac{\sqrt{2 x^2+1} \text{EllipticF}\left (\tan ^{-1}(x),-1\right )}{\sqrt{2} \sqrt{x^2+1} \sqrt{\frac{2 x^2+1}{x^2+1}}} \]

[Out]

(Sqrt[1 + 2*x^2]*EllipticF[ArcTan[x], -1])/(Sqrt[2]*Sqrt[1 + x^2]*Sqrt[(1 + 2*x^2)/(1 + x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.0092925, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.048, Rules used = {418} \[ \frac{\sqrt{2 x^2+1} F\left (\left .\tan ^{-1}(x)\right |-1\right )}{\sqrt{2} \sqrt{x^2+1} \sqrt{\frac{2 x^2+1}{x^2+1}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 + x^2]*Sqrt[2 + 4*x^2]),x]

[Out]

(Sqrt[1 + 2*x^2]*EllipticF[ArcTan[x], -1])/(Sqrt[2]*Sqrt[1 + x^2]*Sqrt[(1 + 2*x^2)/(1 + x^2)])

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1+x^2} \sqrt{2+4 x^2}} \, dx &=\frac{\sqrt{1+2 x^2} F\left (\left .\tan ^{-1}(x)\right |-1\right )}{\sqrt{2} \sqrt{1+x^2} \sqrt{\frac{1+2 x^2}{1+x^2}}}\\ \end{align*}

Mathematica [C]  time = 0.0277553, size = 17, normalized size = 0.35 \[ -\frac{i \text{EllipticF}\left (i \sinh ^{-1}(x),2\right )}{\sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 + x^2]*Sqrt[2 + 4*x^2]),x]

[Out]

((-I)*EllipticF[I*ArcSinh[x], 2])/Sqrt[2]

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 15, normalized size = 0.3 \begin{align*} -{\frac{i}{2}}{\it EllipticF} \left ( ix,\sqrt{2} \right ) \sqrt{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2+1)^(1/2)/(4*x^2+2)^(1/2),x)

[Out]

-1/2*I*EllipticF(I*x,2^(1/2))*2^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{4 \, x^{2} + 2} \sqrt{x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+1)^(1/2)/(4*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(4*x^2 + 2)*sqrt(x^2 + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{4 \, x^{2} + 2} \sqrt{x^{2} + 1}}{2 \,{\left (2 \, x^{4} + 3 \, x^{2} + 1\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+1)^(1/2)/(4*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(1/2*sqrt(4*x^2 + 2)*sqrt(x^2 + 1)/(2*x^4 + 3*x^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\sqrt{2} \int \frac{1}{\sqrt{x^{2} + 1} \sqrt{2 x^{2} + 1}}\, dx}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**2+1)**(1/2)/(4*x**2+2)**(1/2),x)

[Out]

sqrt(2)*Integral(1/(sqrt(x**2 + 1)*sqrt(2*x**2 + 1)), x)/2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{4 \, x^{2} + 2} \sqrt{x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^2+1)^(1/2)/(4*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(4*x^2 + 2)*sqrt(x^2 + 1)), x)